MODULE ET ARGUMENT : FONCTION DE TRANSFERT

Exercice 1. Les constantes R et C sont des réels positifs caractéristiques d'un circuit. La fonction de transfert isochrone d'un filtre est donnée par :

$$H(\omega) = \frac{1 + jRC\omega}{2 + jRC\omega}$$

 ω est un réel positif. On pose $x = RC\omega$.

- 1°) Déterminer la partie réelle et la partie et la partie imaginaire du nombre $H(\omega)$.
- 2°) Compléter le tableau suivant :

x	0	0.5	1	2	3	4	5	10
Partie réelle de $H(\omega)$								
Partie imaginaire de $H(\omega)$								
Module de $H(\omega)$								
argument en rad de $H(\omega)$								

- 3°) Avec la calculatrice graphique construire l'allure des courbes donnant le module et un argument de $H(\omega)$ en fonction de x. Reproduire l'allure de ces courbes.
- 4°) Comment se comporte le filtre pour les signaux de très haute fréquence.
- 5°) Quel est le déphasage maximal introduit par le filtre.